14 dic, 2018

MailFacebookrss twitterYoutube

Le centrali nucleari

Notizie

Per centrale nucleare si intende solitamente una centrale nucleare a fissione, ovvero una centrale elettrica che utilizza uno o più reattori nucleari a fissione per produrre energia.

Il termine si può applicare anche alle future centrali a fusione nucleare, che impiegheranno un reattore a fusione nucleare; tuttavia la ricerca in questo campo è ancora molto incompleta e sono stati ottenuti solo degli abbozzi di fusione controllata.

La fissione nucleare fu ottenuta sperimentalmente per la prima volta da Enrico Fermi nel 1934 bombardando l'uranio con neutroni. Nel 1938 i chimici tedeschi Otto Hahn e Fritz Strassmann, congiuntamente ai fisici austriaci Lise Meitner e Otto Robert Frisch, condussero esperimenti con i prodotti della reazione di bombardamento dell'uranio. Determinarono che il neutrone, relativamente piccolo, è in grado di scindere il nucleo dei pesanti atomi di uranio in due parti pressoché uguali. Numerosi scienziati (tra i primi Leo Szilard) compresero che le reazioni di fissione rilasciavano ulteriori neutroni, con il risultato di potere originare una reazione nucleare a catena in grado di alimentarsi da sola. Gli scienziati in molte nazioni (inclusi gli Stati Uniti, il Regno Unito, la Francia, la Germania e l'URSS) furono spronati dai risultati sperimentali a chiedere ai loro rispettivi governi un supporto alla ricerca sulla fissione nucleare.

Negli Stati Uniti, dove emigrarono sia Fermi che Szilard, fu costruito il primo reattore, conosciuto come Chicago Pile-1, che divenne critico il 2 dicembre 1942. Questo lavoro rientrò nell'ambito del progetto Manhattan, che portò anche alla costruzione di enormi reattori a Hanford allo scopo di produrre plutonio da utilizzare per le prime armi nucleari (parallelamente fu approntato un piano di arricchimento dell'uranio).

Dopo la seconda guerra mondiale, il timore che la ricerca sui reattori potesse incoraggiare il rapido sviluppo di armi nucleari anche in funzione delle conoscenze accumulate, insieme all'opinione di molti scienziati che ritenevano occorresse un lungo periodo di sviluppo, crearono una situazione in cui la ricerca in questo settore fu tenuta sotto stretto controllo dai governi. Effettivamente, la maggioranza delle ricerche sui reattori era incentrata a fini puramente militari. L'elettricità venne prodotta per la prima volta da un reattore nucleare il 20 dicembre 1951, alla stazione sperimentale EBR-I (Experimental Breeder Reactor I) vicino ad Arco, che inizialmente produceva circa 100 kW (fu anche il primo reattore a subire un incidente di parziale fusione del nocciolo nel 1955). Nel 1953 un discorso del presidente Dwight Eisenhower, "Atomi per la pace", enfatizzò l'utilizzo dell'atomo per scopi civili e sostenne un piano politico per porre in primo piano gli Stati Uniti in un'ottica di sviluppo internazionale del nucleare. Nel 1954 Lewis Strauss, presidente della Atomic Energy Commission statunitense, in un convegno di scrittori scientifici sostenne: "Non è troppo aspettarsi che i nostri figli usufruiranno nelle loro case di energia elettrica troppo economica per poter essere misurata".

Il 27 giugno 1954, la centrale nucleare di Obninsk divenne il primo impianto al mondo a generare elettricità per una rete di trasmissione e produceva circa 5 MW di potenza.

Nel 1955 la "Prima Conferenza di Ginevra" delle Nazioni Unite, il più grande incontro mondiale di scienzati e ingegneri, si riunì per studiare la tecnologia. Nel 1957 venne lanciata l'EURATOM accanto alla Comunità Economica Europea (quella che successivamente divenne l'Unione Europea). Nello stesso anno nacque anche l'Agenzia Internazionale per l'Energia Atomica (IAEA).

La prima centrale nucleare commerciale al mondo fu quella di Calder Hall, a Sellafield in Inghilterra, e iniziò a lavorare nel 1956 con una potenza iniziale di 50 MW (successivamente divenuti 200 MW). Il primo reattore nucleare operativo negli Stati Uniti fu invece il reattore di Shippingport, in Pennsylvania (dicembre 1957).

La potenza complessiva delle centrali nucleari aumentò velocemente, passando da meno di 1 GW nel 1960 a 100 GW nei tardi anni settanta e 300 GW nei tardi anni ottanta. Dal tardo 1980 la potenza è andata crescendo molto più lentamente, raggiungendo i 366 GW nel 2005, con la maggiore espansione avutasi in Cina. Tra il 1970 e il 1990 furono in costruzione centrali per più di 50 GW di potenza, con un picco a oltre 150 GW tra il tardo 1970 e i primi anni ottanta; nel 2005 sono stati pianificati circa 25 GW di nuova potenza. Più dei 2/3 di tutti gli impianti nucleari programmati dopo il gennaio 1970 furono alla fine cancellati.

Durante gli anni settanta e ottanta il crescere dei costi economici (legati ai tempi di costruzione delle centrali) e la diminuzione dei prezzi dei combustibili fossili resero gli impianti nucleari allora in costruzione meno attrattivi. Negli anni ottanta, negli Stati Uniti, e negli anni novanta, in Europa, la crescita meno marcata della potenza e la liberalizzazione dell'elettricità hanno anche contribuito a rendere la tecnologia meno attraente.

La crisi del petrolio del 1973 ebbe un forte effetto sulle politiche energetiche: la Francia e il Giappone che usavano sopratutto petrolio per produrre energia elettrica (rispettivamente, in tal modo producevano il 39% e il 73% dell'energia elettrica totale) investirono sul nucleare. Oggi le centrali nucleari forniscono rispettivamente circa l'80% e il 30% di elettricità in queste nazioni. 

Molte nazioni restano particolarmente attive nello sviluppo dell'energia nucleare, tra le quali Giappone, Cina, India, tutte attive nello sviluppo della tecnologie sia veloce sia termica; la Sud Corea e gli Stati Uniti solamente nello sviluppo della tecnologia termica; e Sud Africa e Cina nello sviluppo di versioni di reattore nucleare modulare pebble bed (PBMR). Finlandia e Francia perseguono attivamente programmi nucleari; la Finlandia ha in costruzione uno dei primi reattori nucleari di III generazione del tipo EPRAreva, che attualmente è in ritardo di due anni rispetto ai programmi. Il Giappone ha un attivo programma di costruzione di centrali nucleari con nuove unità divenute operative nel 2005. Negli Stati Uniti tre consorzi risposero nel 2004 alla sollecitazione dello United States Department of Energy riguardante il "Programma di Energia Nucleare 2010" e furono compensati con fondi per la costruzione di nuovi reattori, tra cui un reattore di quarta generazione VHTR concepito per produrre sia elettricità che idrogeno. Nei primi anni del ventunesimo secolo l'energia nucleare ha destato particolare interesse in Cina e India per sostenere il loro rapido sviluppo economico; entrambe stanno sviluppando reattori riproduttori rapidi. La politica energetica del Regno Unito riconosce la probabile futura carenza di approvvigionamento energetico, che potrà essere colmata dalla costruzione di nuove centrali nucleari o prolungando il tempo di vita degli attuali impianti esistenti.

Il 20 dicembre 2002 il Consiglio dei Ministri bulgaro si espresse favorevolmente alla ripresa della costruzione della centrale nucleare di Belene. Le fondamenta dell'impianto furono poste nel 1987, però la costruzione fu abbandonata nel 1990, con il primo reattore pronto al 40%. Si prevede che il primo reattore divenga operativo nel 2013, e il secondo nel 2014.

Le centrali nucleari a fissione seguono oggi standard di sicurezza di livello molto elevato e normalmente condensano al loro interno un bagaglio tecnologico molto avanzato per la gestione di tutti i processi. Le centrali nucleari a fissione sono di fatto tra gli impianti più controllati in uso oggi anche se storicamente si sono verificati diversi incidenti di gravità più o meno seria che hanno permesso di affinare procedure e tecniche costruttive inerenti la prevenzione. Prendendo in esame il problema dal punto di vista puramente tecnico, una centrale nucleare recente integra sistemi di protezione (ad esempio di caduta del nocciolo) e di verifica tali da mitigare (ma non annullare) tutti i problemi prevedibili.

Il problema delle scorie radioattive è probabilmente il più critico per l'industria nucleare. Il procedimento di fissione nucleare (come peraltro quello di fusione, seppur in maniera molto inferiore) produce materiali residui ad elevata radioattività che rimangono estremamente pericolosi per periodi lunghissimi (fino a tempi dell'ordine del milione di anni). Si tratta di vari elementi radioattivi leggeri (i prodotti di fissione) e di combustibile esaurito (uranio, plutonio ed altri radioelementi attinoidi pesanti) che vengono estratti dal reattore. Questo materiale, emettendo delle radiazioni penetranti, è molto radiotossico e richiede dunque severe precauzioni nel trattamento e nello smaltimento. Ad oggi applicazioni pratiche di soluzioni realmente definitive non sono ancora state realizzate e collaudate dal tempo.

 

Questo sito utilizza cookie per migliorare la tua esperienza e offrire servizi in linea con le tue preferenze. Chiudendo questo banner, scorrendo questa pagina o cliccando qualunque suo elemento potresti acconsentire all’uso dei cookie. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie leggi l'informativa --> approfondisci
.

To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information